Supplemental material of Coordinate-descent for learning orthogonal matrices through Givens rotations

نویسندگان

  • Uri Shalit
  • Gal Chechik
چکیده

Theorem 1. Convergence to local optimum (a) The sequence of iterates Ut of Algorithm 4 satisfies: limt→∞ ||∇f(Ut)|| = 0. This means that the accumulation points of the sequence {Ut}t=1 are critical points of f . (b) Assume the critical points of f are isolated. Let U∗ be a critical point of f . Then U∗ is a local minimum of f if and only if it is asymptotically stable with regard to the sequence generated by Algorithm 4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordinate-descent for learning orthogonal matrices through Givens rotations

Optimizing over the set of orthogonal matrices is a central component in problems like sparsePCA or tensor decomposition. Unfortunately, such optimization is hard since simple operations on orthogonal matrices easily break orthogonality, and correcting orthogonality usually costs a large amount of computation. Here we propose a framework for optimizing orthogonal matrices, that is the parallel ...

متن کامل

Efficient coordinate-descent for orthogonal matrices through Givens rotations

Optimizing over the set of orthogonal matrices is a central component in problems like sparse-PCA or tensor decomposition. Unfortunately, such optimization is hard since simple operations on orthogonal matrices easily break orthogonality, and correcting orthogonality usually costs a large amount of computation. Here we propose a framework for optimizing orthogonal matrices, that is the parallel...

متن کامل

Supplemental material for: Efficient coordinate-descent for orthogonal matrices through Givens rotations

Definition 1. Riemannian gradient The Riemannian gradient ∇f(U) of f at point U ∈ Od is the matrix UΩ, where Ω ∈ Skew(d), Ωji = −Ωij = ∇ijf(U), 1 ≤ i < j ≤ d is the directional derivative as defined in Eq. 1 of the main text, and Ωii = 0. The norm of the Riemannian gradient ||∇f(U)|| = Tr(∇f(U)∇f(U) ) = ||Ω||fro. Definition 2. A point U∗ ∈ Od is asymptotically stable with respect to Algorithm 1...

متن کامل

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Specifying Gaussian Markov Random Fields with Incomplete Orthogonal Factorization using Givens Rotations

In this paper an approach for finding a sparse incomplete Cholesky factor through an incomplete orthogonal factorization with Givens rotations is discussed and applied to Gaussian Markov random fields (GMRFs). The incomplete Cholesky factor obtained from the incomplete orthogonal factorization is usually sparser than the commonly used Cholesky factor obtained through the standard Cholesky facto...

متن کامل

Scalable streaming learning of dyadic relationships

Modern machine learning problems are often about learning a mapping between two high-dimensional domains. For example, learning a mapping from the domain of images to the domain of words, or learning which documents are similar to others. We refer to these mappings as dyadic relationships. In this thesis we focus on learning dyadic relationships encoded in matrix form. For example, a matrix map...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014